A vertical vortex sheet of constant strength γ is centered on the origin as shown. A small piece ds of the sheet is therefore a point vortex of circulation $d\Gamma = \gamma ds$. The stream function contribution of this piece at some location x on the axis is therefore given by

$$d\psi = \frac{d\Gamma}{2\pi} \ln r = \frac{\gamma \, ds}{2\pi} \ln r$$

a) Determine the overall stream function $\psi(x)$ on the axis, due to the <u>entire</u> sheet. (This is a subset of determining $\psi(x, y)$ on the entire plane).

b) Determine the vertical velocity v(x) of the sheet on the x-axis. Also determine the vertical velocity $v_{\text{point}}(x)$ of a point vortex placed on the origin, with the same total vortex strength Γ as the sheet. Explicitly state the relation between γ and Γ in this case.

c) Plot v(x) and $v_{\text{point}}(x)$ overlaid. Set the plot scale to ignore the singularity in v_{point} at x = 0. Describe how the two curves relate at large x distances.

From CRC Handbook:

$$\int \ln(x^2 + a^2) \, dx = x \, \ln(x^2 + a^2) - 2x + 2a \, \arctan(x/a) + C$$